
INFRASOLID®

Data Sheet HISsmd

HIS100smd

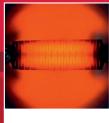
Thermal Infrared Emitter

HIS100smd

Thermal infrared emitter in standard 3x3 mm² SMD, gold plated

HISsmd series emitters are small, powerful infrared radiation sources that meet the demands for reliable miniaturized gas sensors and offer a wide range of new application scenarios. The low energy consumption, the high efficiency and the small size allow the use in portable, battery-powered, and mobile applications. These innovative infrared light sources are used, for instance, in respiratory gas analysis, e.g. for the detection of CO_2 and breath alcohol, and in Smart Home and Smartphone applications.

The pioneering SMD package enables a fully automated production in high-volume markets.

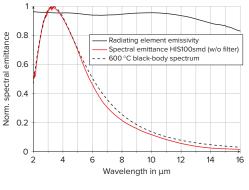

Infrasolid's infrared radiation sources are pulsable thermal emitters with a near black-body emittance. Based on a patented nanotechnology and a patented emitter set-up made of a high-melting metal, the free-standing monolithic radiating element and the nanostructured emitter surface offer numerous advantages in many applications.

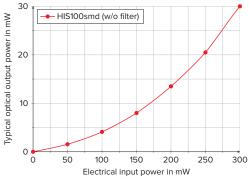
Key features

efficiency

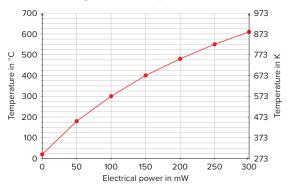
High radiant power

- Pulsable thermal black-body infrared source mounted in a SMD package with a size of 3x3 mm².
- Patented nanostructured radiating element achieves up to 500% more detection signal!
- Innovative surface technology for customized SMD products.
- Wide wavelength range enables applications in mobile, portable devices and various wearables, for miniaturized gas measurement sensors and hand-held spectrometers.

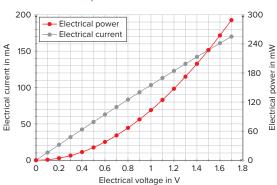

innovative infrared sources for gas detection & spectroscopy

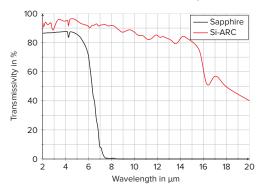

Main specifications

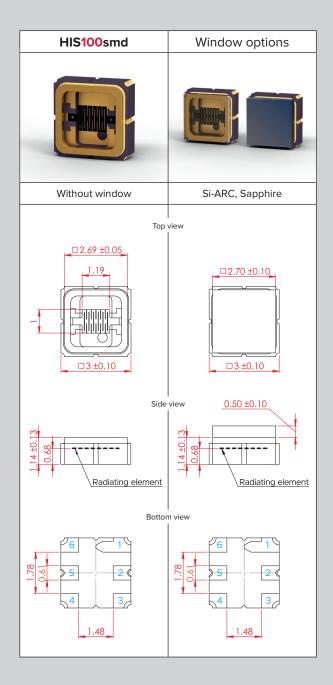
Parameter	HIS100smd		
Package	SMD3		
Radiating element area	1 mm ²		
Radiating element emissivity	> 0.9		
Radiating element temperature	600 °C at 290 mW		
Optical output power	up to 30 mW		
Max. electrical power (DC)	290 mW		
Max. electrical voltage	1.7 V		
Max. electrical current	170 mA		
Electrical resistance	910 Ω		
Modulation frequency*	10 Hz		
Filter (glued window)	Si-ARC, Sapphire		
Wavelength range	2 to 20 μm		


 $^{^{\}ast}$ 50 % modulation depth, square wave signal, 50 % duty cycle

Optical specifications

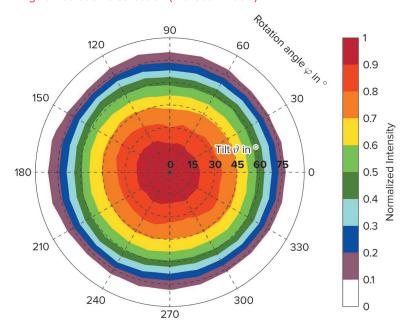

Radiating element temperature

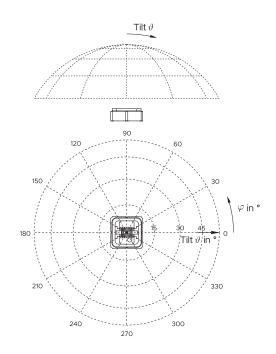

Modulation depth

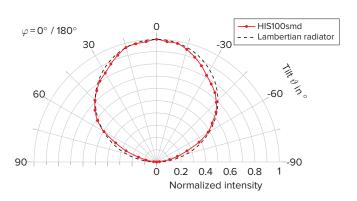


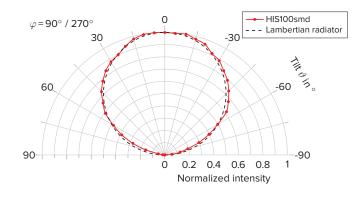
Electrical specifications

Window material transmissivity

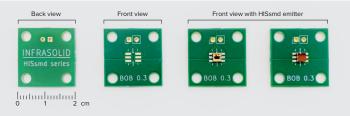

Connection table


Lead	1	2	3	4	5	6
Connection	Case	Power 1	Case	Case	Power 2	Case


Ordering information


Туре	Infrared window
HIS100smd-0	None
HIS100smd-A	Sapphire
HIS100smd-S	Silicon-ARC

Angular radiation distribution (without window)



Breakout board:

For evaluation purposes we offer a breakout board (BOB) wich can be used to easy connect drivers and electronics for evaluation.

Operating mode recommendation:

All our IR sources can be driven in electrical voltage, current or power regulated mode. The application decides whether the operating mode is DC or AC (pulsed). Depending on the drive mode and the applied electrical power the electrical resistance of the IR emitter can change over time. For highest measurement accuracy a power regulated mode is always recommended for thermal IR emitters. However, it is the most complex operating mode and not suitable in all applications.

For applications that require a small and low-cost driving circuit with a maximum stability we have a technical note with an adjustable low dropout voltage (LDO) regulator.

For further information please refer to: www.infrasolid.com/technicalnote

